Notre Dame Undergraduate Research Symposium

On Friday, July 31, Nick Wozniak and Alyssa Frey from the Surface Lab and Cam Recknagel from the Microwave Lab traveled to the University of Notre Dame with a group of Chemistry research students to participate in the Science and Engineering Summer Undergraduate Research Symposium.

The oral and poster sessions included research students from Notre Dame, the University of Michigan, and Hope College.

Hope College Summer Undergraduate Research Function Dinner

Evan Pease represented the physics department at the Hope College Summer Undergraduate Research Function dinner at the Haworth Inn and Conference Center yesterday. One student from each department gave a 5 minute summary of their work. Evan presented the fresh results from the Microwave Lab shown on this blog on July 7. Here is Evan’s presentation.

Microwave Lab

Evan Pease is measuring the even and odd order distortion signals from a superconducting microwave filter. He is using three input signals with a method being developed exclusively in the Hope College Microwave Lab called 3-tone intermodulation
. This ground breaking research will help to establish the limits of superconductivity in microwave electronics and at the same time reveal new insights into the physics of high temperature superconducting materials. The graph to the right (click on it) shows the 3rd order nonlinearity, revealing a “nonlinearity catastrophe” at the superconducting transition temperature. Evan is measuring signals as small as 30 femtoWatts in this experiment.

Research Trip to Calvin College

On Friday, June 26, Jenny Hampton and her students traveled to Calvin College to use the Atomic Force Microscope (AFM) in Kumar Sinnah‘s lab in the Chemistry Department there.

Nick at the Controls

Alyssa at the Controls

Nick Wozniak and Alyssa Frey both took turns at the controls of the AFM.

The purpose of the trip was to look at the surface structure of several electrodeposited thin films. We looked at both nickel-iron alloy samples and copper samples.

Jenny Removes the AFM Head In order to swap the samples, first, the AFM head must be removed. This is the most delicate part of the instrument, containing the AFM cantilever (or “tip”), the laser, and the photodetector. Here Jenny Hampton disconnects the electronic connection between the head and the scanner before removing the head.

Nick Changes the Sample Next, the sample is attached to a metal disk, which is held onto the scanner by a magnet. Here Nick places one of the samples on the scanner.

Alyssa Moves to a New Spot After the AFM head is replaced, the tip can be positioned on the sample to image a particular area. Here Alyssa moves the tip from one location to another with the help of the live image feed from the optical microscope.

DI Multimode PicoForce AFM The AFM in Kumar Sinnah’s lab is optimized for measuring small forces. Dr. Sinnah uses the AFM to investigate interactions (such as binding or recognition) between biological molecules. However, atomic force microscopy was originally developed to image the nano- and micro-scale structure of surfaces, which is what we measured.

The trip was a success. Before we headed back to Holland in the late afternoon, we took a moment to try the ergonomically designed chairs in the lobby of the Science Complex.

Trying the Ergonomic Chairs

Trying the Ergonomic Chairs