Hope Turns Purple to Help Find a Cure

They have never met but they are on the same team. Their uniforms are different but they don them with solidarity of purpose. And though they play different positions, they desire the same outcome. The soccer player and the scientist want to beat cancer.

Senior Allie Wittenbach, a forward on the Hope women’s soccer team, takes her fight against cancer to the field to help defeat the disease that claimed the life of her mother, Debbie. Senior Philip Versluis, a biochemistry and molecular biology major, battles cancer in a research lab in the expansive Van Andel Institute (VAI) in downtown Grand Rapids. Together, the two Hope students, along with hundreds of others, use their activism and skills to combat what has been aptly called “the worst scourge of humankind.”

Purple means funding. Purple stands for awareness. Purple gives hope.

And the color purple unites them. Is there a prettier color to represent a longed-for cure of this ugly disease? It signifies VAI’s grassroots fund-raising program, called Purple Community, connecting individuals, schools, teams and businesses to the resources needed to join the fight against cancer and neurodegenerative diseases. Purple means funding. Purple stands for awareness. Purple gives hope.

And in January, 2017, purple equaled $8,691.89. That was the amount raised by Hope athletes during a Purple Community Game on Hope’s campus. The funds are financing the stipend, and other expenses, for a Hope student to be a VAI summer intern, a unique way Hope athletics partners with Hope academics. Wittenbach is one such athlete. Versluis is this summer’s intern.

****

Senior forward Allie Wittenbach

Whenever Allie Wittenbach puts on her soccer cleats — the ones with her mom’s initials, DJW, penned on the white Nike swoosh, and “Never Give Up” written on the sides — she remembers she is playing for something bigger than herself. Every practice. Every play. Every game. When the Purple Community Game rolls around, played in purple jerseys and paraphernalia to bring attention to and raise funds for cancer research at VAI, her sense of loss and hope is even more pronounced.

“There is definitely a different feeling in the air that day,” she says. “On Purple Game day, we are playing for those who are fighting and surviving cancer.” She pauses and her voice trails off a bit but does not tremble. “Or those who are no longer with us. They are, and were, the ones battling harder than we ever could on the field.”

Wittenbach became heavily involved in Purple Community Games long before she arrived at Hope. At her high school, Forest Hills Central, she became a whole-hearted Purple Community member after her mom was diagnosed with cancer in 2010. While there, she was instrumental in raising over $100,000 for VAI ‘s cancer-cure effort.

“There is definitely a different feeling in the air that day. On Purple Game day, we are playing for those who are fighting and surviving cancer.” She pauses and her voice trails off a bit but does not tremble.

Once at Hope, Wittenbach rallied forces again to raise even more money. Driven and intense, loving and loyal too, Wittenbach just wants to make a difference beyond the soccer pitch. It’s that plain and simple. Her commitment to cancer research is as purple as purple gets.

“This is a cause Allie is really passionate about but it is never all about her,” observes Head Women’s Soccer Coach Leigh Sears. “Last year, I left it to her to organize the event for our team and she had everyone involved. She is always so grateful for the opportunity to raise money and awareness for the cause.”

Allie and Debbie Wittenbach (Photo Courtesy of Allie Wittenbach)

Debbie Wittenbach ended her battle with cancer in November of 2015, Allie’s sophomore year. The woman who knew just about everyone by their first name in her hometown of Ada, Michigan, and who never missed one of her children’s sporting events (Stephen Wittenbach also played basketball for Hope), left a legacy of strength and compassion as well an indelible mark on her community and her daughter. Allie talks about her mom with evident pride tinged by profound loss. But it’s clear she’s not asking for sympathy. She talks about her mom with great joy as a way to keep her memory alive.

“Everybody knows somebody who has been affected by cancer. I’m not the only one who’s lost a loved one too young…. But I would not trade the 20 years I got with my mom for 100 years with anybody else,” Allie says. “You can quote me on that.”

****

Philip Versluis commutes to VAI in downtown Grand Rapids from his hometown of nearby Walker, Michigan, long before the traffic gets thick. He takes the elevator to his fifth-floor lab and starts his day by checking the incubator he set up the night before, well after 6:00 p.m. Research is not a 9-to-5 job, he says. It’s dedicated to questions and experiments that have little consideration of a clock. And that is why the whip-smart Versluis likes it. No two days worked, or the results derived, are exactly alike. Even if those days and experiments try his patience and stamina.

Hope senior Philip Versluis conducts cancer research at VanAndel Institute. (Photo Courtesy of VAI)

“When you do research, most of the time you just fail,” he confides. “It’s rather remarkable how many times you can perform an experiment and see it get infected, or it doesn’t develop well. So then you redo it over with the hopes that it works next time. When it does, when you find that one bit of information that leads to another question that leads to another experiment, that is pretty cool. And the more you dig in, the cooler it gets.”

Dr. Scott Rothbart and Philip Versluis at Van Andel Institute (Photo Courtesy of VAI)

Versluis has been digging in for three summers now under the direction of Dr. Scott Rothbart, assistant professor in the Center for Epigenetics at VAI, who supervises five other lab assistants too. The two previous summers Versluis worked as an intern funded by the Meijer Foundation. As he continues on with cancer research this summer thanks to funding designated from the Hope Purple Community Game (“For which I am very appreciative,” he says), Versluis embraces the complexities of his work that specifically deals with the mechanisms of DNA control. Knowing more about genomic information inside various, specific cells — be they the peculiarities of brain, blood, liver or lung cells — gives researchers better knowledge about molecular drivers of cancer.

We expect a lot from human-made technology. So why is it then that we haven’t cured cancer?

And it’s the knowing that takes time and money. A lot of time and money. We’ve gotten men to the moon, constructed an information highway, talk on phones that move with us, and built monoliths of modern design. We expect a lot from human-made technology. So why is it then that we haven’t cured cancer? It turns out the human body is much more complicated than any one of those other things.

Philip Versluis and Dr. Scott Rothbart, and son, attend a Purple Community Game at Hope.

“Different cancers act differently,” says Rothbart. “And they affect different people differently. The types of approaches that would be effective for treating one type of cancer are ineffective for treating another type of cancer because they are driven by completely different mechanisms.”

In other words, curing cancer is like taking aim at a constantly morphing bull’s eye even though the target may look somewhat the same. But there is hope on the not-too-distant horizon because “for some cancers, the idea of a cure is within reach,” Rothbart adds. “For other types of cancer, the idea of converting these deadly diseases into chronic diseases that are abated with a pill once a day, like diabetics use insulin, may be a way to manage cancer. We may not be able to get rid of every single cancer cell but we may be able to hold the system down where you can live a long healthy life as long as you take your pill.”

****

Having assurances like that from Rothbart keeps Wittenbach focused on Purple Community efforts at Hope and inspires Versluis to continue research after graduation from Hope, as he’ll soon apply to Ph.D. programs in molecular biology. The two Hope students may not know each other but they share the same commitment to be the change they want to see in the medical world. The soccer player needs the scientist and vice versa.

“You don’t have to be only in the lab to help this cause. We all play a part. That’s why these games matter.”

“I can’t be in the lab but Philip can and is and I respect him for that. We need him there,” says Wittenbach, a communication and business double major. “But you don’t have to be only in the lab to help this cause. We all play a part. That’s why these games matter.”

Giving Water for Life

Water is life. Our liquid reliance is embedded in 70% of our world’s geography and makes up 60% of our bodies, after all. Yet, nearly one billion people do not have access to safe water.

Boiled down: One in eight people worldwide cannot find clean, drinking water.

And that’s exactly why the Hope College Engineers Without Borders (EWB-Hope) chapter traveled to Kenya in May 2017. Only 57% of Kenya’s population has sustainable access to clean water sources, according to the World Health Organization. By comparison, the United States measures 99%.

For three weeks, in a rural area called Bondo just outside Migori in southwest Kenya, Adam Peckens, laboratory director for the engineering department, and seven Hope students, coordinated and engineered the installation of two wells and a rainwater catchment system. Their efforts — financed through EWB-Hope’s own fundraisers and a crowd-funding program initiated by the College Development Office — ultimately changed the lives of over 500 local residents whose previous access to clean water was an hour’s walk, each way. EWB-Hope went on a mission to give water for life.

EWB-Hope team, Bondo residents, and the new rainwater catchment system at the local church/school.

Their efforts ultimately changed the lives of over 500 local residents whose previous access to clean water was an hour’s walk, each way.

This was not EWB-Hope’s first trip to the Bondo area. The chapter — under the advisement of Dr. Courtney Peckens, assistant professor of engineering — has partnered with the community for three years and has made two previous excursions there — the first in 2015 to determine what water residents had access to (very minimal, very seasonal, and very contaminated); the second, in 2016, to attempt a well installation that unfortunately was not successful. This year, however, the team struck it water-rich. By the end of their stay, they watched their new Kenyan friends gratefully use hand pumps to access clean water close to home.

For all of the manual and mind hours it took to make living waters flow, none of the work hammered out by EWB-Hope in Africa or on campus prior to departure, was done for college credit. Instead the sheer satisfaction of knowing fellow human beings could now drink clean water was reward enough.

“It was a great learning experience where it’s not necessarily an equation you’re trying to solve for a grade like in an engineering class, but a real-life problem affecting real people.”

Michelle Ky with community member and chairperson, Becky, at closing meeting.

“It was a big success story for our students and the (EWB) chapter overall. They really pushed forward to get the work done,” says Peckens, an environmental engineer who worked on many different groundwater remediation projects around Michigan and the Midwest, before coming to Hope in 2014. “It was a great learning experience where it’s not necessarily an equation you’re trying to solve for a grade like in an engineering class, but a real-life problem affecting real people. It’s taking in all of the factors around that problem and trying to come up with the best solution. And that solution might not be perfect, but it works.”

To his point, Peckens recalls how designs changed once the team got on the ground in Kenya. Though the full drawing set and a mock build of the catchment system worked just fine in the engineering lab on campus, “when we got there, circumstances were different, of course,” he observes. “We lacked some of the same supplies or the right tools (we had back home), and multiple trips to the hardware store in Bondo meant we had to adapt the design in the field. It was a good hands-on experience for the students to see that not everything works out as you planned so how are you going to troubleshoot that.”

“It was a good hands-on experience for the students to see that not everything works out as you planned so how are you going to troubleshoot that.”

Another challenge was the language barrier. The Bondo residents speak Luo, a dialect of Nilotic languages. The Hope team did not have that language skill in their toolkit so dependence on their guide and interpreter, Paul O’lango, was heavy, especially at that Bondo hardware store.

Working on rainwater catchment system and tank spigot.

“Part of our project requirements was to locally source as many components as possible,” explains senior mechanical engineering major Rilee Bouwkamp from Holland, Michigan. “For the rainwater catchment system built at a local church, this meant finding a 10,000-liter water storage tank, saw, gutters, nails, hanger straps, the works. Most of the frustration came with trips to the hardware store in nearby Migori that would take almost an entire afternoon. Trying to explain what we needed was difficult even with a translator’s help and a sense of urgency in Kenyan culture is rare. Overall, our team learned to be patient and we began to understand that this aspect of the project was out of our control.”

“In the process Hope students discover they have so much impact not just mechanically but in local relationships.”

Dr. Courtney Peckens has been EWB-Hope’s faculty advisor since she returned to Hope to teach in 2013. (And yes, Courtney and Adam are a husband-wife team.) A Hope graduate of the class of 2006 who participated in EWB herself (she travelled to Cameroon to install bio-sand filters), Peckens knows full well how much the program changes lives… and not just those who now are able to get clean water. “This program is a good fit for us. It ‘s a way for Hope engineering students to use their God-given talents to help people,” she says, “and in the process they discover they have so much impact not just mechanically but in local relationships.”

“My favorite memory of the entire trip was interacting with the community members because they showed me how to appreciate the little things in life,” concurs sophomore mechanical engineering major Kaytlyn Ihara from South Lyon, Michigan. “Compared to what we have in the United States, they have very little. Even though they don’t have the luxuries that we Americans have, they always had a smile on their face. They always were thanking us, but I can never thank them all enough for all that they showed me. Now being back in the States, it has really taught me to take nothing for granted.”

Now that clean, safe, reliable, living water flows in Bondo maintaining relationships is as important as maintaining systems.

Well drilling at Bondo B location. Pictured Left to Right: Michelle Ky, Mathew Delaney, Mitchel Konkle, Kaytlyn Ihara, Brittney Weickel, Rilee Bouwkamp, Emma Donahoe.

EWB-Hope will continue to get updates from O’lango about once a week and then they’ll return to Kenya within the year, this time for a monitoring trip to check on the status of the wells and catchment system as well as the lives of their new friends. “We aren’t a group that comes in and installs an engineering system and then leaves without any future contact,” says Courtney. “We are in this for long-term solutions for people.”

Now clean, living water flows in Bondo. And so do beautiful, cross-cultural relationships. Both, it turns out, are necessities of life.

Hope Alums Help Hope Students Race To Zero

2009 Hope engineering alumni, Rachel Bakken Romero and Dr. Greg Pavlak back together again at the Race to Zero Student Design Competition in Golden, CO. Photo by Ellen Jaskol.

If they could have projected their 10-year-old futures after graduating from Hope, Rachel Bakken ’09 Romero and Greg Pavlak ’09 may have never seen another opportunity to work together again. Yet, maybe their engineering minds could have forecasted the possibility, albeit a small one. They did, after all, both graduate as mechanical engineering majors the same year, after taking multiple classes together on the same course sequence. They both had the same interest in building science, and they both ended up at the same graduate school, too — University of Colorado-Boulder — for a period of time to earn graduate degrees in the subject (Romero with a master’s; Pavlak with a doctorate).

So this past April, when they had the chance to work together again, though briefly, it was to culminate another engineering project for the sake of Hope students and energy efficient construction. Romero, as an energy engineer at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, was helping to direct the Race to Zero Student Design Competition, a program sponsored by the U.S. Department of Energy that challenges collegiate students to design zero energy ready homes. Pavlak, as a visiting assistant professor of engineering at Hope, was mentoring three Hope engineering majors in their year-long senior design project for that competition.

Together, two alums and three soon-to-be alums, were making known the quality of Hope’s engineering program on a national stage. Of the 50 institutions that submitted designs to the Race to Zero competition, 40 were chosen while 39 teams traveled to Golden to vie for the title. Of those 39, the Hope team was the only one from a liberal arts, undergraduate institution. Baylie Mooney, Rachel Barbutti and Tiffany Oken — all members of the Hope engineering class of 2017 — put their quality work up against other teams from the University of Vermont, Syracuse University, Vanderbilt, and Purdue, Pavlak says, and learned a great deal about building science and themselves in the process.

“Dr. Roger Veldman called it a David and Goliath story. And it was. But even to be participating and competing against those other teams that had much more experience, specialized education, and funding was a testament to the hard work that our students put in to work out their design problems.”

“Some of the other teams they (Mooney, Barbutti, and Oken) were up against had these small armies of master’s and PhD engineers,” explains Pavlak. “(Hope engineering colleague) Roger Veldman called it a David and Goliath story. And it was. But even to be participating and competing against those other teams that had much more experience, specialized education, and funding, was a testament to the hard work that our students put in to work out their design problems.”

New Cook Village housing

So, what was the Hope team’s project? Finding ways for the newest Hope housing project — Cook Village, currently under construction — to become so energy efficient that the building’s own renewable power can offset most or all its annual energy consumption. “We selected a Hope campus project partly because it was interesting and partly because of the timing,” Pavlak says. “Construction was starting on the next two buildings of the village last fall, and AMDG Architects, who did the original design, was still involved so we were able to work with them and get the detailed plans for these new buildings. We really approached it from the perspective of what can we do with this existing design to make it ready to meet the zero energy requirements for the competition. ”

Using energy modeling software to simulate, test, and derive proposed outcomes, Mooney, Barbutti, and Oken found they could take a Cook building from its base of 40% to 83% more efficient than the average home. To get there, they boosted insulation and mechanical systems quality, used strategic solar paneling, and took advantage of the relatively constant temp of the earth (roughly 50 degrees all year) to heat and cool the house with an enhanced geothermal system.

Left to right, 2017 Hope engineering alums, Baylie Mooney, Rachel Barbutti, and Tiffany Oken present their project at the Race to Zero Student Design Competition. Photo by Ellen Jaskol.

A skeptic might think that all of those energy upgrades might come at too high cost. But Mooney will be quick to tell them that it’s all not as expensive as they’d think. Especially considering the cost of energy consumption over the life of the eight-occupant, two-story home.

If they aren’t sustainability buzzwords already, “doable efficiency” just got elevated in the Hope engineering lexicon.

“We found through our updates that there was only a 2.7% pricing increase from the original bids for that building to the more energy efficient upgraded materials and systems we proposed,” says Mooney who hopes to go into building science for her career. “Considering that there was only a 2.7% cost increase, that was pretty impressive especially since we got so close to zero energy for a good size home (2800 square feet). It’s very exciting because significantly lowering energy use and cost for these already efficient (Cook Village) buildings seems doable.”

Team Renewable Hope listen to other presenters at Race to Zero. Photo by Ellen Jaskol.

If they aren’t sustainability buzzwords already, “doable efficiency” just got elevated in the Hope engineering lexicon. Though the Hope team’s findings could not change energy efficiency for these recently completed buildings, future Cook Village buildings could use some of their recommendations. Either way, from Mooney’s perspective, everything about racing to zero was worth it. “The project, the competition and the trip out to Colorado — they were the highlight of my career at Hope,” she says.

“To have Hope playing on that level was a great way to get recognition for a strong program that is growing these really unique individuals who are well-rounded and well-educated. They don’t just speak engineering. They can literally speak Spanish, or they traveled abroad, or they play a sport. They are engineers with a liberal arts background, which of course I believe in.”

As for Romero, she was excited to have the opportunity to engage with and showcase Hope College students and faculty, especially one who was a former classmate, on her home turf of NREL where she has worked for seven years. And though Pavlak has recently taken a new position at Penn State and will be leaving Hope this summer, Romero hopes a Hope team will return to Race to Zero in the future.

“It was great to have others at NREL and in the competition know about Hope,” Romero explains. “To have Hope playing on that level was a great way to get recognition for a strong program that is growing these really unique individuals who are well-rounded and well-educated. They don’t just speak engineering. They can literally speak Spanish, or they traveled abroad, or they play a sport. They are engineers with a liberal arts background, which of course I believe in. Overall, I think the Hope team did a great job showing off the quality of Hope engineering.”

Uncommon Class on Common Grounds

It’s the second-leading commodity traded in the world after oil, with a worldwide consumption of 2.2 billion cups per day. And, the United States is its leading consumer at 400 million cups daily. Yet, few people are aware of the scientific, political, historical and cultural implications swirling inside their cup of morning joe.

This is not the case for Hope students who take Dr. Tom Bultman’s new class, The Science and Culture of Coffee. They are getting a thoroughly flavorful education about everything they ever needed or wanted to know about coffee.

True scientific experiments are conducted using coffee as the vehicle to construct hypotheses, make predictions, collect data and evaluate outcomes.

Angelique Gaddy measures the acidity of coffee using a pH meter.

Offered for the first time this spring, Bultman’s two-credit coffee course is just one of two of its kind taught at colleges and universities in the U.S. as far as he can tell (the other is offered at UC-Davis). While there are dozens of barista schools in the country that teach their students how to roast, grind and brew the perfect cup of coffee, this new class for college credit goes much deeper than that. True scientific experiments are conducted using coffee as the vehicle to construct hypotheses, make predictions, collect data and evaluate outcomes. How do acidity levels change in beans due to varying roasting times? What happens to the mass transfer of water and grounds during the brewing process? What is the anatomy of a coffee cherry fruit and how are beans harvested from within?

There are history lessons, too, about the global trade of the Coffea arabica beans and bush — a plant native to Ethiopia that helped create early agricultural routes throughout the sub-tropical world.  Bultman, a professor of biology, also covers ground on the way coffee affects national economies, personal health and policies on fair trade and human rights. And knowing how much college students love their coffee for its social and caffeinated benefits, Bultman’s course is listed under Hope’s General Education Math and Science offerings which target non-science majors. It’s gives its pupils one truly eye-opening experience.

“This class has definitely increased my appreciation of coffee, especially in the roasting of it,” says sophomore Sarah Kalthoff of Carmel, Indiana. “I see all of the work and love that goes into the process. Coffee really brings people together throughout the world and I now recognized that when I go to a coffee shop here. So many people around the world — farmers, families, fair traders — are affected by the cup of coffee I’m drinking so it’s been great to see how coffee brings cultures together.”

From left to right. Sarah Lundy, Kirsten Kettler, and Savanah Stewart roast green coffee beans using a air popcorn popper, tin can, cooking thermometer, and iPhone timers. Coffee chaff from the roasting surrounds the popper.

Students in the class roast green coffee beans nine times during its half-semester schedule, using makeshift roasters that consist of an air popcorn popper, a tin can, and a small cooking thermometer. As the chaff from the beans pops like confetti from the contraptions’ tops during the roasting process, the lab becomes the best smelling classroom on campus. Students monitor the time, temperature, color and odor of the beans. Then later, they’ll brew and drink their roasted creations, experiencing the process of “cupping” to learn to how to discern and evaluate the taste of flavor notes — chocolate, butterscotch, molasses, raisin, for example — that are subtle but evident in good beans.

Gerrit Immink cools his beans.

As if getting free morning coffee isn’t benefit enough (the course is offered at 9:30 am on Tuesday and Thursdays), Bultman even sets aside a class period for his students to learn how to create their own coffee mug in Hope’s ceramics studio under the guest tutelage of art professor Billy Mayer. Field trips to area businesses that roast and retail are also on the course syllabus.

Not surprisingly, this class on coffee has grown in popularity quickly. It’s been full to the brim each time it’s been offered (twice thus far) and the buzz around campus is that more students are clamoring to get in.

In this class, because all of us drink coffee, the knowledge is applicable to us. And we’re taking a class we’d never expect to take in college. This class to me is the definition of a liberal arts education.”

“It’s been a blast,” say the middle-aged Bultman who took up drinking coffee just three years ago and now admits to being a coffee geek. “Everyone who enrolls drinks coffee so it means something to them. And so many students don’t think about where coffee comes from or how it’s grown or brewed, it’s just one of those things we easily take for granted. Now they are more appreciative of all the work that goes into coffee before they sit down and drink a cup.”

“I technically didn’t have to take this class because all of my science requirements were done but when I saw the poster about it, I knew I had to take it,” comments junior communication major Sarah Gallagher of Chicago, Illinois. “A lot of college students who are not science majors say science and math classes are impractical to their lives but in this class, because all of us drink coffee, the knowledge is applicable to us. And we’re taking a class we’d never expect to take in college. This class to me is the definition of a liberal arts education.”

Seeing Stars

Time travel, long imagined by writers and dreamers, is not as far-fetched as you might believe. Sure, it seems fantastical and improbable — the imaginings of which are only meant for postulations and movies — but astrophysicists do it all the time.

Freshmen Jeff Engle conducted summer research with Dr. Peter Gonthier before ever taking his first official Hope class. Here in a Hope lab, he worked on testing new techniques for implementing kernel density estimations in pulsar simulations.

And so did Hope College freshman Jeff Engle in the summer of 2016 at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. All it took was expensive, highly powered, one-of-a-kind stellar equipment called the Fermi Gamma-Ray Space Telescope. That and funding and guidance from the Hope College physics department and Professor Dr. Peter Gonthier.

Before ever taking one class at Hope, Engle spent his pre-freshmen summer as a member of the Hope physics department’s Research Bridge Program which operates with the belief that students should “learn physics by doing physics.”

Dr. David Thompson, far left, is the Fermi Deputy Project Scientist and LAT Instrument Multiwavelength Coordinator at the Goddard Space Flight Center. Here he instructs, from left to right, Jesse Ickes, Josiah Brouwer, and Jeff Engle.

Engle spent his pre-freshman summer in the physics department’s Research Bridge Program as part of the department’s philosophy that students should “learn physics by doing physics.” Before ever setting foot in his first Hope College class, Engle worked with two upperclassmen, Jesse Ickes ’16 and sophomore Josiah Brouwer, on pulsar star research with Gonthier at Goddard and at Hope.

Five incoming freshmen took part in the Bridge Research Program in 2016, and Dr. Stephen Remillard, chairperson of the department, hopes to expose as many 2017 freshmen to similarly strong laboratory experiences. “With the Physics Summer Bridge Program, incoming students who are seriously considering a career as a physicist have the opportunity to begin the real science that is one of the great pillars of a Hope College science education,” describes Remillard. “As they begin their first physics course, bridge students have already gained familiarity with the application of the knowledge. Ultimately, this undergraduate research will open doors for these students as they continue into industry, graduate programs, or wherever their scientific training takes them.”

Engle jumped into his first Hope research experience “kind of blindfolded because I’d never done anything like that before,” he admits. He found Gonthier and his fellow Hope students encouraging and supportive. “I was a little nervous because I was going to be working around well-known scientists (at Goddard).” But he embraced the experience nonetheless.

“Stars, such as pulsars, give off gamma and radio waves and these are filtered through the telescope which shows us the ways they were created billions of years ago,” says Gonthier. “Understanding pulsars helps us know more about our galactic center, about the beginning the universe.”

With Goddard’s Fermi (a cousin to the famed Hubble Telescope), Gonthier and crew were working with a virtual time machine. The telescope takes its users back in time and space to see the history of the entire universe written in the heavens beyond our sky. “Stars, such as pulsars, give off gamma and radio waves and these are filtered through the telescope which shows us the ways they were created billions of years ago,” says Gonthier. “Understanding pulsars helps us know more about our galactic center, about the beginning the universe.”

Dr. Peter Gonthier, professor of physics

Gonthier has conducted research at Goddard for the past 24 summers, most years taking Hope students along with support from grant funding. His work in theoretical physics is helping to develop and test realistic descriptions of pulsars’ magnetospheres, important for the understanding of how neutron stars are able to produce radio and high-energy radiation pattern. His team worked last summer in the Goddard office of Nobel Laureate John Mather.

“It was definitely humbling to meet him and work in his office,” says Engle of cosmologist Mather, recipient of the 2006 Nobel Prize in physics for his work on the Cosmic Background Explorer Satellite with George Smoot.

“One of the best things about getting to do research at Goddard was being able to see the way so many people of different nationalities come together to study one thing — our universe,” Engle says. “There were scientists there from Africa, Russia, Italy, Greece, and the Netherlands. It was cool to get to work around them.”

Engle isn’t sure what kind of scientist he wants to be at this point, but he knows one thing for sure: This early experience has helped him appreciate not only all that goes into conducting such complicated research but all that goes into this complicated universe. Ultimately, it even helped strengthen his Christian faith.

“It is so cool to see how delicate the system is, how God is at work in it all.”

“If anything were different about our solar system, if anything was off just a little bit, it would be a huge mess,” says Engle. “It is so cool to see how delicate the system is, how God is at work in it all.”

Student’s Research Adds Fuel to Fast-Food Debate

If the fast-food industry ever does away with those crinkly but potentially harmful papers that your favorite burger comes wrapped in, one of the people you can thank is a physics-turned-history-major from Hope College.

Senior Margaret Dickinson concluded research on PFAS content in fast food wrappers, such as the ones she is holding, using the Pelletron particle accelerator on Hope’s campus.

Margaret Dickinson, a senior from Grand Rapids, MI, spent two years at Hope testing hundreds of fast-food wrappers from several states in order to detect per- and polyfluoro alkyl substances (PFAS) in the packaging. Human-made with long environmental lifetimes, PFASs are toxic to humans and animals, and its bioaccumulation is troubling to scientists.

Linked to some cancers and health disorders, PFAS is used in products to repel water and retard flames, and has been found in carpet, furniture fabrics, textiles and outdoor clothing, cosmetics, fire-fighting foam, microwave popcorn bags, and, yes, fast-food wrappers.

“The best part about doing research as an undergrad is learning how to ask difficult questions and learning how to find their answers. Often we were on our own in the lab, working with expensive machinery, and we had to calmly work out problems quickly.”

“Around fifty years ago, PFAS was not found in anyone’s blood at all. It did not even exist,” explains Dickinson. “Now it is in measurable quantities in every human being, and that includes newborn babies because it passes through the bloodstream from the mother to the fetus.” PFAS has even reached the blood streams of polar bears in the North Pole.

Stockpiles of tested fast-food wrappers

Using the Pelletron particle accelerator on Hope’s campus, under the guidance of Professor Dr. Paul DeYoung and former Hope Professor Dr. Graham Peaslee, Dickinson and fellow senior David Lunderberg, along with alumnus Nick Hubley ’14, used a testing technique called PIGE, particle-induced gamma-ray emission, to detect fluorine in the wrapper samples. But because the paper is fragile and the proton beam from the accelerator is powerful, Dickinson and team had to refine their normal testing methods so as not to destroy their paper samples.

“The best part about doing research as an undergrad is learning how to ask difficult questions and learning how to find their answers,” Dickinson declares. “Often we were on our own in the lab, working with expensive machinery, and we had to calmly work out problems quickly. You learn how not to panic, when to get help, when to work independently. These are all good skills to have in life, too.”

It’s good to remember that not all fast-food wrappers have PFAS, she notes, but since you don’t know which do or don’t, the best thing to do is take your food out of their wrappers and containers as soon as possible.

The Hope crew’s efforts over two years, in collaboration with other well-known research powerhouses, found that 38% of the sandwich and burger wrappers tested, along with 20% of the paperboard and 56% of the dessert and bread wrappers had PFAS in them. However, 0% of the tested paper cups had PFAS. While skeptics note that consumers aren’t actually ingesting the wrappers themselves (so what’s the harm?), scientists argue that it is the high temperatures of the food that allows wrapper-holding PFAS to seep into your burger and fries.

Other teams contributing to the research were from Silent Spring Institute, Oak Ridge Institute for Science and Education, the U.S. Environmental Protection Agency, California Department of Toxic Substances Control, Green Science Policy Institute, the Environmental Working Group, and Oregon State University. News of their joint research broke in February 2017, and Dickinson reports that over 200 news outlets have since carried the story.

So what’s a consumer to do? Give up fast-food?

Not all fast-food wrappers have PFAS, Dickinson says, but since you don’t know which ones do or don’t, the best thing to do is take your food out of its wrappers and containers as soon as possible because the greater the exposure to PFAS, the higher the levels in one’s system. Still, “Everything in moderation,” Dickinson reminds.

“All along it was really important for me that my research made a difference. I needed to see that it had an effect on people.”

No longer focused on physics, Dickinson changed her major area of study to history after a personal epiphany while studying abroad in London in 2015 (she also has minors in math, classical studies, and, of course, physics.)

She hopes to eventually teach modern British history at the college level, or even go into scientific governance — the realm of looking at how scientists are affected by policies made by non-scientists. It is here where this fully formed liberal arts student knows she could best apply her experiences in sciences, skills in research, and passion for history and politics to affect others for the better.

“All along it was really important for me that my research made a difference. I needed to see that it had an effect on people,” concludes Dickinson. “I hope eventually that the FDA (Food and Drug Administration) bans these chemicals. I hope that fast-food companies realize that wax paper is just as cheap. Half the time they use it anyways, so why not all the time? Why not put pressure on the companies that are supplying the paper to switch over. It’s not difficult to switch and it’s not expensive. That would be the goal.”

Hope 2017: A Watch List

New year. New semester. New classes. New start.

The bisected rhythm of an academic year is something special. It affords faculty, staff and students two yearly markers for two new beginnings that most other entities and professions do not. In academia, new starts come at the end of summer (and the official start of a new school year) and at the end of 365 previous days (and the official start of a new calendar year). And each gives new opportunities to look at what’s to come on our educational horizon.

It is once a year or in a lifetime events that brighten our mission statement with even more living color, those things that make a Hope education as fresh as a new year or semester.

At Hope, we’ve done our fair share of looking ahead. We’re not wishing our days away, mind you, but we cannot help but be excited about what 2017 has in store on campus. Of course, we’re always mindful of the everyday privilege “to educate students for lives of leadership and service in a global society through academic and co-curricular programs of recognized excellence in the liberal arts and in the context of the historic Christian faith.”  Yet, it is once-a-year, or in a lifetime, events that brighten our mission statement with even more living color, those things that make a Hope education as fresh as a new year or semester.

Here is a list of the top five Hope happenings to watch for in this New Year, from new buildings to new institutes to new classes.

  1. Student Space Expands

One has been a little over a year-and-a-half  in the making, the other about eight months. Each will give students new space for living and learning in 2017.

161114BultmanCenter0016
Construction on the $22.5 million Bultman Center nears completion.

The Bultman Student Center, a 42,000-square-foot facility devoted to student activities in the heart of campus, will reach its completion in the spring of 2017. It is hoped that students will get their first look inside their new communal home this April. Ground broke for its $22.5 million construction in the fall of 2015 and since then, this campus epicenter has been taking shape to the excitement of student life offices and groups longing to use it. Named for former presidential duo, Jim and Marti Bultman, the center will be dedicated in the fall of 2017.

161231CookVillage0004
The Cook Village will have two new apartment buildings which will house 16 students by fall 2017.

Cook Village, the student apartment complex that stands in the “U” along Lincoln Avenue and 11th and 12th Streets, is being expanded, adding two more townhouse-style buildings to the four that already exist. At about 3,800 square feet in each, the new brick apartments will house 16 more students. The $1.8 million addition to the village, named for its major donor, the Peter C. and Emajean Cook Foundation, will be completed by the fall of 2017 to welcome new inhabitants for the 2017-18 school year.

2. Toward a Better Understanding of Our Global Society

A series of lectures on wide-ranging international topics will be hosted at Hope in conjunction with the World Affair Council of West Michigan in the spring of 2017. Bringing renowned experts to campus, which include a retired brigadier general and former U.S. ambassador to Afghanistan on Mondays, starting February 7 and ending April 3, the “Great Decision Global Discussion Series” will address hot topics such Latin American health care, clashes in the South China Sea, and the future of the European Union, to name a few. It is a perfect example of Hope’s prioritization to provide the campus community with opportunities for global understanding.

“By bringing foreign policy experts to campus, we live into our liberal arts mission to prepare our students to faithfully engage an increasingly complex and interconnected global society,” says Dr. Dede Johnston, professor of communication and Hope’s liaison with the World Affairs Council of West Michigan. Hope is an educational partner of the World Affairs Council of Western Michigan, which informs and engages people of all ages on matters of national and international importance, and explores how national policy and global events affect the community in West Michigan.

3. New Institute to Prepare Students for Vocational Future

GeorgeAndSibillaBoerigter
George ’61 and Sibilla Boerigter

The Boerigter Institute, a new, college-wide initiative, will help ensure that every Hope student is robustly prepared for career success and professional growth. The goal of the Boerigter Institute is to transform the college’s approach to career preparation with an innovative and comprehensive framework that guides students from their first semester onward by identifying their strengths and interests, and engaging them in career planning and experiential learning. It will more closely link multiple departments and programs at the college.

This significant effort is made possible by a major gift from SoundOff Signal in honor of Founder and Chairman George Boerigter, who is a 1961 Hope graduate, and his wife, Sibilla. A task force of Hope faculty and staff is currently working to develop this new, cross-functional integrated program, bearing the Boerigters’ name, which is scheduled to begin implementation by fall 2017.

4. Happy Anniversary, Reformation!

MTE1ODA0OTcxNzA3MjM3OTAx
Reformer Martin Luther, 1483-1546

On October 31, 1517, Martin Luther changed the course of Christian history for 95 reasons. It was on that day that the once anonymous monk and scholar delivered his “Ninety-Five Theses” to a Roman Catholic Church in Wittenberg, Germany, sparking the Protestant Reformation and altering the progression and understanding of Christianity as the world once knew it.

As a school affiliated with the Reformed Church in America since its inception in 1866, Hope has long appreciated the significance of this event. And as a school that also appreciates ecumenism, Hope will commemorate this momentous 500th anniversary by looking at the Reformation with more than one event, and throughout the year, from various faith-based, historical and social viewpoints via lectures, discussions and even a musical performance. A Presidential Colloquium commences this spring with keynote speakers to complement the Danforth Lecture that will all address the Reformation’s impact. Hope faculty will engage in panel discussions this fall, offering other perspectives on the topic. As for the musical element, a participatory hymn sing is being planned as well.  Additional information will be released throughout the year about each event.

5. Up to the Grand Challenge

Relevant, complex topics will get new, curricular looks this fall, all thanks to $800,000 from the Andrew W. Mellon Foundation.  The Mellon Grand Challenges Initiative (MGCI) is providing Hope faculty and students with opportunities to come together in true liberal arts fashion to explore “grand challenges” by crossing and connecting disciplines for Hope’s general education program as well as for collaborative summer research. Over three years, MGCI will aspire to support the development of about six projects per semester, involving two or more faculty members and developing a potential total of about 50 new linked courses.

Currently, the MGCI committee has awarded about $130,000 in internal funding to six cross-divisional projects involving a total of 15 faculty members. Entitled Disability in Contemporary Societies, Healing in Post-Conflict Societies, Immigration Stories, National Identities, Peace Movements, Storytelling and Cross-Cultural Empathy, these new classes involve nine departments and all four divisions at Hope.

Three more rounds of funding are on the docket to fund additional courses as is the creation of a summer research program for 2018.